What has recent research taught us about the causes and best instructional management of children with reading and spelling difficulties?

Deborah Knight
SPELD Conference 2004
Competing Theoretical Accounts

- Incomplete cerebral lateralisation (1930s)
- Visual processing and memory deficits (1970s)
- Phonological-core deficit hypothesis (1980s)
- Double deficit hypothesis – phonological + naming speed deficits (1990s)
Reading and spelling difficulties exist on the continuum of developmental language disorders. Primary weakness is in processing the phonological or speech sounds of the child’s language.

Fundamental difficulties forming and maintaining distinct representations of speech sounds - “fuzzy”, indistinct or unstable phonological codes (cognitive structures that aid in the perception and production of speech sounds).

Difficulties establishing accurate and easily accessible links between written and spoken language ie “cracking the alphabetic code”.
Phonological Representation

Input
(what’s heard)

whole word
syllable
onset-rime
phoneme

Output
(what’s said)

shallow levels - develop through natural language experiences
deeper levels - develops through exposure to instruction
Poorly specified phonological codes

- Poor phonological awareness
- Slow naming speed & laboured retrieval of sounds
- Verbal working memory deficits
Factors contributing to early literacy competence

- Phonolog.: 55%
- IQ: 5%
- Other: 40%
Factors contributing to later literacy competence

- IQ: 50%
- Other: 40%
- Phonolog.: 10%
Phonological Awareness

- Capacity to reflect on and manipulate (segment & blend) sounds within words

- Develops in stages reflecting the segmental character of the sound representations

- The most prominent and enduring weakness in people with reading and spelling problems

- The instructional component most likely to prevent reading failure
Phonological Awareness

- The best predictor of learning to read. Significant correlations ($r = .70$) between phoneme awareness and early literacy development.

Scarborough (1991): PA in new school starters predicted reading level in Y1;
Juel (1991): Low PA in K predicted low reading in Y4
Phoneme sensitivity:

- enables child to crack the alphabetic code, to appreciate that spoken language maps onto print at the phoneme level.

- enables development of efficient decoding skills

 → development of word specific orthographic information

 → growth in text comprehension. For 90% of cases, source of poor reading comprehension is poor word recognition skills.
Naming Speed Deficits

- Ability to quickly access phonemes, phoneme strings whole words

- Strong predictive relationship between serial naming speed and early reading progress.
 Torgesen et al (1999): Rapid naming speed in K predicted reading accuracy in Y2
 Berninger et al (1999): RAN score in Y1 predicted rate of growth of ‘sight vocabulary’ through to Y2
Naming Speed Deficits

- Effect: Constrains the development of orthographic images of words (‘sight vocabulary’). Phonological codes activated too slowly to permit efficient encoding of letter combinations found in words.

- Effect: Constrains text reading fluency due to slower individual word recognition.

- Effect: Slower text reading compromises text comprehension.

- A phonological deficit?
Verbal Working Memory

- Temporary, time limited storage of aural information.

- Heavy demands on VWM during literacy skills acquisition.

- Laboured access to speech codes + slower speech rate impedes retention of information in VWM → poor segmentation & blending skills.
Double Deficit Hypothesis

- Two separable deficits:
 - Phonological
 - Naming speed

 → decoding accuracy
 → fluency

which, when co-occurring may account for the more severe and difficult to treat literacy problems.

- Source of naming speed deficits - magnocellular?
 - cerebellar?
Language system abnormality

Magnocellular/ cerebellar abnormality

Cognitive

Phonological deficit

Motor control/timing speed deficit

Biological

Poor phonological awareness

Slow naming speed

Deficits in development of automaticity

Poor verbal working memory

Poor time estimation

Behavioural

Poor reading and spelling

Motor control/timing speed deficit

Phonological deficit

Biological

Cognitive

Environment

Environment
Are Reading Difficulties Hereditary?

Family studies:
1st degree relatives – 35-50% also have RD
Risk for child higher if affected parent still has RD vs “compensated” RD

Risk estimates:
Boys with an affected parent = 40% (x7 risk)
Girls with an affected parent = 18% (x12 risk)
Both parents affected = 60-80%

What’s inherited?
Phonological deficits ie. affected relatives show a similar pattern of processing deficits.
Early Identification

- Early ID Measures
 - articulation accuracy
 - phoneme identification & deletion
 - naming speed tasks
 - repetition of non-words & multisyllabic words
 - letter sound knowledge

- Prediction hit rates = approx. 85% of children correctly identified in K or Year 1.
At risk markers:

- Family history of reading difficulties
- Delayed speech and language development
- Persistent difficulties with expressive phonology
- Evident naming, word retrieval difficulties
- Difficulty learning the alphabet
- Poor spontaneous spelling
- Difficulty with other rote sequences (e.g., days of week, birthday)
Implications from the research

- Identify and commence remediation early.
 “Orthographic avalanche” from Y3 (400 words) → Y4 (4,000 words) → Y6 (10,000 words). 74% students who are poor readers in Y3 remain poor readers in Y9.

- Instructional emphasis on teaching phonemic awareness; explicit instruction in segmenting and blending strategies matched with letter forms.

- Focus on accurate and rapid access to individual letter sounds, sound combinations and whole words.

- Inbuilt, extensive revision.

- Resistance of improvements to fluency in older LD students.
Prevention vs Remediation

<table>
<thead>
<tr>
<th></th>
<th>Remediation</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y3 – Y6 (67.5 hours)</td>
<td>Year 1 (88 hours)</td>
</tr>
<tr>
<td>Pre</td>
<td></td>
<td>Y2</td>
</tr>
<tr>
<td>2yr FU</td>
<td></td>
<td>Y4</td>
</tr>
<tr>
<td>Text Rate</td>
<td>71.3</td>
<td>93.3</td>
</tr>
<tr>
<td>Text Accuracy</td>
<td>75.8</td>
<td>96.7</td>
</tr>
<tr>
<td>Word Attack</td>
<td>69.3</td>
<td>101.1</td>
</tr>
<tr>
<td>Word Ident.</td>
<td>67.6</td>
<td>100.7</td>
</tr>
</tbody>
</table>

(Torgesen et al, 1999)